

NORTH DAKOTA PUBLIC SERVICE COMMISSION

CERILON GTL ND INC.

CERILON GTL NORTH DAKOTA PROJECT – WILLIAMS COUNTY
APPLICATION FOR A CERTIFICATE OF SITE COMPATIBILITY

CASE NO. PU-23-325

JUNE 5, 2024

PART II

**PREPARED TESTIMONY OF
NIEL ERASMUS**

1 **I. Introduction and Background**

3 **Q1. Please state your name, your employer, and your business address.**

4 A. My name is Niel Erasmus. I am employed by Cerilon Inc. (“Cerilon”). My business
5 address is First Canadian Centre, 350 7 Ave SW 29th Floor, Calgary, AB T2P 3N9,
6 Canada.

8 **Q2. What is your position with Cerilon?**

9 A. I am the Project Director, GTL Engineering for Cerilon, based in Calgary, Alberta. As part
10 of the Cerilon Group’s project delivery arm, I am overseeing the engineering development
11 and construction planning of a new gas-to-liquids facility near Trenton, Williams County,
12 ND, which Cerilon will also operate.

14 **Q3. Please describe your educational and professional background.**

15 A. I am a professional engineer registered in the province of Alberta, Canada. I earned a
16 bachelor’s degree in metallurgical engineering and a master’s degree in engineering
17 management from the University of Pretoria in South Africa.

18 I have operational and project experience gained in Africa, Australia, and Canada. Most
19 recently I was part of the executive team, responsible for the feasibility and engineering of
20 a project (value of \$1.2 billion) at Canadian Natural Resources Ltd.’s Horizon oil sands

1 site to recover hydrocarbons and valuable critical minerals together with major reductions
2 on the environmental impact of oil sand tailings. I have delivered various stage projects in
3 the oil sands with a large engineering contractor for companies such as CNRL and
4 Syncrude. The projects varied from hundreds of millions to multi-billion-dollar projects.
5 I further have operational and large project development experience with global Tier 1
6 mining companies with a focus on coal, iron ore, and titanium sands.

7

8 **Q4. What is your role with respect to the Cerilon GTL North Dakota Project (the**
9 **“Project”)?**

10 A. In my role as Project Director, I am responsible for engineering and feasibility assessment
11 for the gas-to-liquids (“GTL”) facility. In this role I coordinate with various stakeholders,
12 including operations personnel, engineering contractors, equipment vendors, major process
13 licensors, and utility service providers, ultimately to ensure the establishment of a safe,
14 reliable and highly automated facility.

15

16 **Q5. Are you familiar with the contents of Cerilon’s Application for a Certificate of Site**
17 **Compatibility for the Project (the “Application”), which is marked as Exhibit No. 1?**

18 A. Yes. I am familiar with the contents of the Application.

19

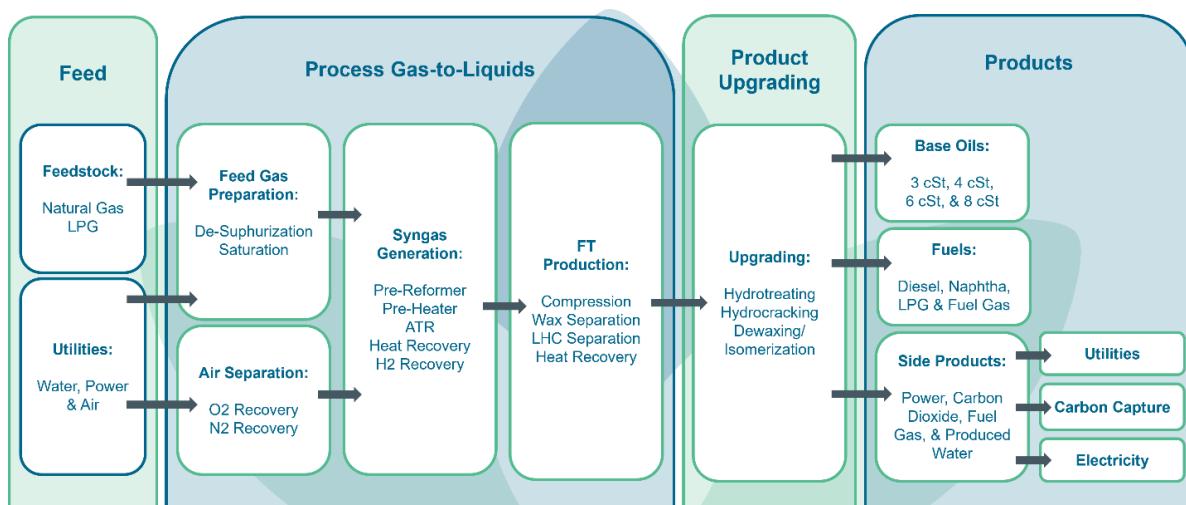
20 **II. Summary of Testimony and Conclusions**

21

22 **Q6. What is the purpose of your testimony today?**

23 A. I will provide an overview of the facility design, the gas-to-liquids process the Project will
24 employ, and a description of the Project construction execution. I will also discuss how
25 the automated plant will be monitored and controlled, and more importantly, the various
26 safety aspects we are addressing as part of engineering design and operational procedures
27 and policies. My testimony and Cerilon’s supporting evidence will demonstrate that the
28 Project will have minimal environmental and human impacts and that the Project meets the
29 Commission’s siting criteria.

1 **Q7. Describe the Project's facilities and the products it will produce.**


2 A. The Project will include two GTL facilities constructed in two phases. Each GTL facility
3 will convert 240 million standard cubic feet per day (“MMscf/day”) of natural gas to
4 approximately 24,000 barrels per day (bpd) of high-value synthetic energy products.
5 Cerilon designed Phase 1 to produce ultra-low sulfur diesel, naphtha, and Group III+
6 lubricant base oils. Cerilon intends to construct Phase 2 with the same capacity but may
7 alter the product slate based on future market conditions.

8

9 **III. Summary of process to convert natural gas to liquids¹**

10

11 **Q8. Provide a brief description of the process the Project will utilize to convert natural
12 gas to liquids.**

13

14 A. The GTL process includes three major process steps:

15 • Step 1 - Natural Gas Conversion to Syngas— An autothermal reformer (ATR) will convert
16 natural gas supplied to the site via pipeline into syngas, a mixture of predominantly
17 hydrogen (H₂) and carbon monoxide (CO). Each GTL facility will contain two parallel
18 autothermal reformer trains converting natural gas to syngas.

19 • Step 2 - Syngas Conversion to Liquids— The Fischer-Tropsch (F-T) process, using a

¹ This section is intended to be a general overview of complex chemical reactions and processing. Refer to Cerilon's Application at § 4.1 *Conversion of Natural Gas to Liquids* for a more detailed description of these processes and reactions. See Dkt. No. 1 § 4.1 (Cerilon 000018–30).

1 specific catalyst, pressure, and temperature, will convert syngas into light hydrocarbons
2 and liquid wax. Each GTL facility will contain two parallel F-T reactor trains converting
3 syngas to liquid hydrocarbons.

4 • Step 3 - Product Work-Up— The product work-up unit further refines the light
5 hydrocarbons and wax streams into the final naphtha, diesel, and base oil products. The
6 product work-up unit will consist of several catalytic reactors and distillation columns to
7 create these products within their associated specification. Each GTL facility will have one
8 product work-up unit, which will process all liquid hydrocarbons and wax generated by the
9 GTL facility's two autothermal reformers and F-T reactor trains.

10 Each of these three steps will be supported by fuel gas-fired process heaters, heat recovery
11 steam-generators, heat exchangers, and enclosed piping.

12

13 **IV. Other Project Components**

14

15 **Q9. Other than the components required for the gas-to-liquid process described above, 16 what other components will the Project include?**

17 A. The process operations will also be supported by various utilities, such as fuel gas-fired
18 steam-generating boilers, interim liquid and gas storage vessels, air separation units for
19 producing nitrogen and oxygen, raw water treatment and wastewater treatment plants, and
20 emergency flares. The Project will also include electric energy generation from two (2)
21 steam turbine generators and pre-combustion carbon capture components to enable carbon
22 sequestration.

23 The Project will also include underground firewater reticulation systems with fire monitors,
24 deluge systems, a dedicated firewater tank and emergency standby pumps, together with a
25 fire and gas detection system.

26

27 **Q10. Describe the Project's electric energy generation component.**

28 A. The Fischer-Tropsch process to convert natural gas into liquid products is exothermic,
29 meaning that the chemical reactions release heat, and generate excess steam with useful
30 heat content. Excess off-gases produced in the process will be used as fuel gas within
31 various fuel-fired process heaters and steam generating boilers, generating additional

1 steam. While the steam generated will be utilized within plant operations, a large fraction
2 of it will be routed to two (2) steam turbines to generate electricity. During steady state
3 operation, each plant (or phase) will consume ~50 MW power and generate ~65 MW,
4 increasing to ~81 MW over a period of three to four years from start-up due to catalyst
5 aging.

6

7 **Q11. How will the electricity generated at the facility be used?**

8 A. The electricity generated on-site will exceed the Project's electrical demand during normal
9 operations. Using a buy-all, sell-all arrangement, the Project will sell all electrical power
10 generated at the site to Basin Electric Power Cooperative. The Project will purchase
11 electricity from the grid, through Lower Yellowstone Rural Electric Cooperative (LYREC)
12 for all its electrical consumption needs (~50 MW per plant during normal operations).

13

14 **Q12. How much electricity does Cerilon anticipate will be sold to the grid?**

15 A. Based on current design preferences, Cerilon estimates that during steady-state operation,
16 each plant (or phase) will generate ~65 MW, increasing to ~81 MW over a period of three
17 to four years from start-up due to catalyst aging. Cerilon will update electricity generation,
18 consumption, and export numbers as engineering decisions evolve regarding the Project's
19 power consumption and generation capacity.

20

21 **Q13. Describe Cerilon's plans for carbon capture and sequestration at the Project.**

22 A. Cerilon has committed to using carbon capture and sequestration ("CCS") to reduce carbon
23 emissions from the facility. A carbon capture unit on-site will separate CO₂ from off-gases
24 generated by the GTL facilities. This captured CO₂ will then be compressed and routed via
25 underground pipeline for on or offsite geologic sequestration by Cerilon or another third-
26 party.

27

28 **Q14. How much CO₂ does Cerilon anticipate its CCS system will capture?**

29 A. Cerilon's configuration will capture approximately 450,000 metric tons of CO₂ per year,
30 reducing the Project's greenhouse gas emissions by approximately 33%.

1 **Q15. Describe Cerilon's plans for sequestering the captured CO2.**

2 A. Geologic sequestration of CO₂ is the process of injecting CO₂ into specific types of
3 geologic formations deep underground for permanent storage. Cerilon conducted a CCS
4 pre-feasibility study with the Energy & Environmental Research Center (“EERC”) to
5 evaluate potential geologic storage sites. The EERC report analyzed four potential
6 locations for CO₂ storage in the Williston Basin. The evaluation confirmed the Project Site
7 as an ideal location for CCS; however, Cerilon is still exploring alternative arrangements
8 with other third parties dealing with the off-site transportation and sequestering of CO₂.

9

10 **Q16. Will Cerilon be operating the CO2 sequestration site?**

11 A. No. Cerilon does not plan to own or operate either the CO₂ pipeline or the sequestration
12 site. A third party will apply for all permitting and approvals required for both the pipeline
13 and sequestration.

14

15 **Q17. Please describe the facility flares and thermal oxidizers that will be employed by the
16 Project.**

17 A. The facility flares and thermal oxidizers have separate purposes and will operate
18 independently. The purpose of the flares will be to safely combust excess process gases
19 generated during startup, shutdown, and process unit upset events within the GTL facilities.
20 No process gases will be routed to the flares during normal operation; however, a pilot
21 flame will always be present on the flare to ensure combustion during an upset event. Each
22 GTL facility will be equipped with a high-pressure flare header and a low-pressure flare
23 header, both of which will be routed to a combined flare structure.

24 The thermal oxidizers are back-up emission control devices used to reduce emissions from
25 the GTL facilities' liquid storage vessels and wastewater treatment equipment when the
26 primary emission control methodology is not available. During normal operation,
27 emissions from the storage vessels and wastewater treatment equipment will be routed to
28 a vapor recovery unit, which will recycle these emissions back to the GTL facilities for re-
29 use as fuel within the various fuel-fired process heaters and steam-generating boilers.
30 However, if the vapor recovery unit were to experience a malfunction or were otherwise
31 unavailable, these emissions would be routed to a thermal oxidizer.

1 Similar to a flare, a thermal oxidizer combusts gases routed to it using supplemental fuel
2 (natural gas) to verify complete combustion is achieved. However, unlike a flare a thermal
3 oxidizer combusts these gases within an enclosed combustion chamber and thus they
4 appear and operate more similarly to a small process heater than a flare.

5 The thermal oxidizers will normally be maintained in “hot-standby mode” such that they
6 are available to safely combust these emissions in the event that the vapor recovery unit
7 were to shut down or malfunction unexpectedly. Each GTL facility will be equipped with
8 one thermal oxidizer, meaning that there will be two thermal oxidizers at the site.

9

10 **Q18. Please describe the [air separator, cooling tower, etc.] that will be employed by the
11 Project.**

12 A. The Project will require roughly 6,000 tons per day of oxygen for each GTL facility and
13 some nitrogen for vessel purging safety systems. An Air Separation Unit separates
14 atmospheric air into its primary components (namely nitrogen and oxygen). These units
15 are typically composed of air compressors, an air purification system, heat exchangers,
16 cryogenic cooling systems and distillation columns, and liquid oxygen and nitrogen storage
17 systems.

18 The Project will also feature numerous heat exchangers and aerial coolers to minimize
19 overall raw water consumption. These aerial coolers will feature winterized designs that
20 utilize air recirculation and/or other strategies to ensure safe and proper operation during
21 the cold North Dakota winter nights.

22

23 **V. Project Inputs**

24

25 **Q19. What are the main inputs needed for the Project and the GTL process?**

26 A. Natural gas feedstock is the main input required for the products produced by the Project.
27 In addition, raw water will be required as process water and to make up for water losses
28 from the Project’s water-cooling facilities.

29

30 **Q20. Where is the natural gas feedstock for the facility sourced?**

31 A. The Project will connect to the Northern Border Pipeline through a new pipeline

1 approximately two miles in length that will be permitted, constructed, owned, and operated
2 by a third-party partner.

3

4 **Q21. Describe the source of raw water for the Project.**

5 A. Raw water will be appropriated from the Missouri River. Cerilon is in discussions with
6 third-party water suppliers with existing water appropriation permits sufficient to supply
7 the Project. If commercial arrangements cannot be made with a third-party water supplier,
8 Cerilon will evaluate other options for water access, including potentially applying for a
9 water appropriation permit from the North Dakota Department of Water Resources and all
10 other permits necessary to construct an intake structure and water pipeline to the site.

11

12 **Q22. Will Cerilon take any steps to minimize the Project's water demand?**

13 A. Yes. Many of the processes within the Project will generate water. To the extent
14 practicable, this water will be treated and recycled within the Project. Cerilon has also
15 designed the Project to minimize the need for cooling water by utilizing air cooling to the
16 extent practicable. Although air cooling increases the complexity of the Project's design,
17 Cerilon estimates that it reduced water demand by approximately 70% relative to using
18 only water cooling.

19

20 **VI. Product Marketing and Delivery**

21

22 **Q23. Describe how Cerilon will market its products.**

23 A. - **Naphtha:** Cerilon intends to market naphtha to Canadian oil sands producers, where it
24 will be used as a diluent to reduce the viscosity of bitumen in pipelines.
25 - **Diesel:** Cerilon will market a portion of its #1 Diesel within Williams County and
26 surrounding areas, with the remainder destined for the Gulf Coast for blending purposes.
27 - **Group III + base oils:** Cerilon will be the only significant producer of these
28 exceptionally high-grade lubricant base oils in North America. These products will be
29 transported via rail tanker cars and sold to refineries on the Gulf Coast.

1 **VII. Wastewater and solid waste management**

3 **Q24. Describe how Cerilon will manage wastewater generated by the Project.**

4 A. The Project will generate the following types of wastewater that will be discharged off-
5 site:

- 6 • Treated Process Wastewater: The GTL facilities will produce wastewater. This
7 wastewater will be treated and recycled back to the GTL facilities as much as
8 practicable. The treated wastewater will be discharged to the Missouri River in
9 accordance with applicable limitations. Cerilon anticipates that a discharge line
10 will be installed in the same right-of-way as the Project's water supply line, with
11 the water discharged near the intake structure. The discharge structure will be
12 permitted and constructed to comply with applicable environmental requirements.
- 13 • Potentially Contaminated Stormwater Runoff: Stormwater from within the GTL
14 Facility process units has an increased potential for minor contamination due to
15 small leaks from equipment, inadvertent small spills to grade when equipment is
16 opened for maintenance, or other means. Good operation, maintenance, and
17 housekeeping practices will mitigate potential sources of stormwater contamination
18 potential. However, as an added precaution this stormwater will be routed to an
19 onsite stormwater pond for temporary holding. The stormwater pond will be tested
20 for contamination and routed to an outfall to Eightmile Creek on the Project Site if
21 found safe for discharge. If the stormwater in this pond is found to be potentially
22 contaminated, it will be sent to the wastewater treatment operations that are also
23 used to treat process wastewater. The potentially contaminated stormwater pond
24 will be designed with sufficient capacity for a large rainfall event. However, in the
25 event of an unusually large rainfall event, or series of rainfall events, that exceed
26 the capacity of the stormwater pond, it will overflow to the outfall on Eightmile
27 Creek. In the unlikely event that a hydrocarbon spill reaches the potentially
28 contaminated stormwater pond during a rainfall event that exceeds the pond's
29 capacity, additional steps will be taken to mitigate the risk of stormwater leaving
30 the site. These steps include potentially deploying booms, skimmers, and/or other
31 equipment.

- Uncontaminated Stormwater Runoff: Stormwater from the developed areas of the Project Site with reduced potential for contamination (e.g., utilities, electric energy production, liquid storage, etc.) will flow overland to either Eightmile Creek or to the Buford-Trenton Irrigation Canal following existing flow patterns at the Project site. Offsite impacts from stormwater runoff will be mitigated in accordance with the North Dakota Department of Environmental Quality's ("NDDEQ") regulations.
- Sanitary Wastewater: Sanitary wastewater will be collected in holding tanks which are periodically pumped into tanker trucks for off-site treatment at an appropriate publicly owned treatment works. Sanitary wastewater will not be directly discharged from the site.

Q25. Describe the steps Cerilon intends to take to mitigate potential impacts from industrial stormwater.

A. All industrial stormwater generated on-site must be managed in accordance with the multi-sector general permit NDR05-0000 issued by the NDDEQ. This permit requires baseline control practices aimed at minimizing the impact of stormwater discharges to waters of the state. A stormwater pollution prevention plan ("SWPPP") must be developed, which identifies potential sources of pollution that may reasonably be expected to affect the quality of stormwater discharges and specifies practices to minimize pollutants in stormwater discharges from industrial facilities. Controls must be identified for each industrial source or activity that could contribute pollutants to stormwater runoff, including good housekeeping, dust control, preventative maintenance, spill prevention and response, employee training, erosion and sediment controls, stormwater management, total maximum daily load conditions, and non-stormwater control practices. Cerilon intends to route stormwater from process areas to stormwater ponds which can temporarily store stormwater in the event that contamination is detected. Contaminated stormwater would then be routed to the wastewater treatment operations also used to treat process wastewater. Noncontaminated stormwater will be diverted to Eightmile Creek consistent with the site's current drainage patterns. The ponds will also provide a location for settling of sediments collected by stormwater runoff before discharging. These stormwater management techniques will be incorporated into the Project's NDPDES permits.

1

2 **Q26. Describe the steps Cerilon intends to take to mitigate potential impacts from process**

3 **treated wastewater.**

4 A. Process treated wastewater to be discharged from the Project will be managed under the

5 North Dakota Pollutant Discharge Elimination System (“NDPDES”). The NDPDES

6 program addresses wastewater discharged from point source facilities either to an outfall

7 or a publicly owned treatment works. Depending on the location of the discharge, existing

8 water quality impairments in the receiving water body, total maximum daily loads of

9 pollutants in the discharged wastewater, and technology-based effluent limits would

10 impact the concentration at which certain constituents may or may not be permitted to be

11 discharged. These conditions are in place to protect the environment and the water quality.

12 Cerilon submitted an application for a NDPDES permit to the NDDEQ on February 5,

13 2024 for the proposed discharge of process wastewater to the Missouri River. The NDDEQ

14 is currently evaluating the application to confirm the proposed wastewater will not cause

15 or contribute to an exceedance of the North Dakota Water Quality Standards, which are

16 established to protect public health and the environment. As part of the NDDEQ

17 application, Cerilon has committed to testing the quality of the treated wastewater on a

18 regular basis.

19

20 **Q27. Describe the solid waste that will be generated by the Project.**

21 A. Cerilon anticipates a relatively low generation of hazardous and non-hazardous solid

22 wastes for an industrial site of its size. The types of waste to be generated include, but are

23 not limited to:

24

- 25 • Spent catalysts that cannot be regenerated, recycled, or otherwise reclaimed;
- 26 • Wastewater treatment plant solids; and
- 27 • General industrial wastes such as aerosol cans, paints and other coatings, and used
- 28 cleaning solvents.

29 **Q28. How will Cerilon dispose of solid wastes generated by the Project?**

30 A. Non-hazardous solid waste will be transported by truck to the local landfill. Any

31 contaminated or hazardous waste would be trucked to an appropriate licensed disposal off-

1 site. No wastes will be disposed on-site.
2

3 **VIII. Project Construction**
4

5 **Q29. Provide a brief overview of the Project's construction process.**

6 A. Various activities must be completed throughout Project construction, including land
7 surveying, geotechnical surveys and analyses, locating existing underground utilities, site
8 grading, installation of foundations and underground utilities, erection of aboveground
9 components and utilities, and finally, Project commissioning.

10 Once the necessary siting approvals are received from the Commission for the Project,
11 several activities must be completed prior to the proposed commercial operation date. The
12 majority of the activity relates to delivery of the equipment and construction of the
13 facilities. Pre-construction, construction, and post-construction activities for the Project
14 will include:

- 15 • Relocating existing pipelines that interfere with the proposed facility layout.
- 16 • Constructing access roads and or improving/upgrading existing roads. Road
17 upgrades will be designed in consultation with Trenton and Buford Townships and
18 the North Dakota Department of Transportation.
- 19 • Site clearing and grubbing.
- 20 • Grading of site.
- 21 • Foundation design and installation. The majority of foundations are anticipated to
22 be piles.
- 23 • Delivery, assembly, and installation of modular components and equipment.
- 24 • Delivery of prefinished modular buildings (administration, control room,
25 laboratory, and electrical houses).
- 26 • Erection of other buildings on site (process or warehouse structures).
- 27 • Reclaiming areas disturbed by construction, temporary facilities, staging, etc.
- 28 • Facility, module, and process testing; followed by commissioning and ramp-up
29 activities and,
- 30 • Commencing commercial operations.

31

1 **Q30. Are there any existing pipelines/infrastructure on the Project Site that will need to be**
2 **relocated?**

3 A. Cerilon has confirmed that pipelines owned by Kinder Morgan and Grayson Mill will need
4 to be rerouted to accommodate construction of the Project.

6 **Q31. Describe how the relocation of existing pipelines will be handled.**

7 A. Cerilon has initiated discussions with both Kinder Morgan and Grayson Mill to discuss
8 rerouting these lines at Cerilon's expense. Pipeline owners will be responsible for securing
9 regulatory authorizations for these routing changes. Work is underway to confirm the new
10 pipeline routing, the timing of construction of new pipelines, the abandonment and removal
11 of old pipelines, and the costs of rerouting these lines. The rerouting of these pipelines are
12 targeted to be done just prior to site clearing.

14 **Q32. Describe how Project construction will be managed.**

15 A. Cerilon will hire an Engineering, Procurement, and Construction ("EPC") contractor to
16 manage the design and construction of the Facility. The EPC contractor will coordinate
17 multiple construction and vendor contracts and ensure conformity with Project plans and
18 specifications as well as compliance with all regulatory requirements. Cerilon will require
19 the EPC contractor to develop a Health and Safety Plan to address public and worker safety
20 during the construction and operation of the proposed Project. The Health and Safety Plan
21 will identify requirements for minimum construction or operation distances from
22 residences or businesses and for temporary fencing around staging, excavation, and
23 laydown areas during construction.

25 **Q33. Once construction is completed, what types of testing will be required before the**
26 **commercial operations of the Project can safely begin?**

27 A. To achieve readiness for start-up for the facility, various testing needs to be performed on
28 the equipment and systems to ensure their integrity, safety, and proper functioning. The
29 key testing requirements include:

- 30 • Pressure Testing
- 31 ○ Strength/Hydrostatic Testing: This involves pressure testing vessels, piping

systems, boilers, and other equipment to verify their structural integrity and leak-tightness at pressures above the design operating pressure. It is typically done using water or other incompressible fluids.

- Pneumatic Testing: In cases where hydrostatic testing is impractical, pneumatic (air/gas) testing may be performed, but with strict safety precautions due to the higher potential energy of compressed gases.
- Integrity Testing: Used to locate and verify repairs of leaks in heat exchangers, vessels, and special equipment.

- Inspection and Non-Destructive Testing

- Visual inspections to check for defects, corrosion, or damage.
- Non-destructive testing methods like radiography, ultrasonic testing, magnetic particle inspection, and liquid penetrant testing to examine welds, vessel shells, and other critical components for flaws or defects.

- Functional Testing

- Testing of instrumentation, control systems, alarms, and emergency shutdown systems to ensure proper operation.
- Checking of relief valves, flares, and other safety systems.

- Analytical Testing

- Testing of process fluids, feedstocks, and products to verify composition, purity, and conformance to specifications using methods like gas chromatography, mass spectrometry, and others.
- Analysis of water streams for corrosion control, treatment chemicals, and environmental compliance.

The specific testing requirements may vary based on the facilities' configuration, equipment, and applicable codes and standards (e.g., ASME, API, ASTM). Close coordination with operations, maintenance, and inspection teams is crucial to ensure all systems are thoroughly tested and verified before start-up.

Q34. Please explain Cerilon's process for addressing public and interested parties if there are any concerns during or after construction.

A. If members of the public and/or interested parties have concerns, they may contact the

1 designated liaison officer with the appointed Construction Manager during construction
2 and the designated Cerilon Operations liaison after construction. Prior to construction, all
3 immediate neighbors to the Project Site will receive mailers that will include the
4 Construction Manager's liaison contact information.

5

6 **IX. Operations and Maintenance and Project Decommissioning**

7

8 **Q35. Discuss the personnel that will be involved in operating and maintaining the Project.**

9 A. Cerilon will operate and maintain Phase 1 of the Project with approximately 110 full-time
10 employees. Phase 2 is projected to require a similar level of staffing.

11 The majority of employees will consist of engineers, technicians and highly trained
12 operators, with some administrative staff. Some maintenance personnel and support
13 personnel will be sub-contracted to third parties.

14 The operations and maintenance staff will have full responsibility for ensuring that the
15 Project operates consistent with applicable permits, prudent industry practice, and
16 equipment manufacturer recommendations.

17

18 **Q36. Discuss the steps Cerilon will take to minimize safety risks during operation.**

19 A. Cerilon will maintain safe operations by following operating procedures, conducting
20 routine maintenance on all equipment, complying with all environmental regulations, and
21 worker safety regulations. Safe work procedures will be in place prior to start-up.

22 Additionally, Cerilon will develop policies and procedures to maintain safety during
23 normal and abnormal operating conditions. It will also cover startups, shutdowns and
24 malfunctions. Cerilon's standard operating procedures will be continuously updated and
25 improved. The Project design will include monitoring devices, alarms, and fail-safe
26 devices and equipment that will mitigate the risk of dangerous operating conditions due to
27 unanticipated malfunctions. Any malfunction will be investigated to identify the root cause
28 of the malfunction, contributing factors, and appropriate corrective actions. Regular safety
29 reviews and hazardous and operability analysis (HAZOPs) will also be conducted as per
30 standard refining operating practice.

1 **Q37. Describe the steps Cerilon will take to promote onsite worker safety during Project**
2 **operations.**

3 A. OSHA regulations for workplace safety will be enforced and executed as necessary to
4 protect the safety of the workers. All employees, contractors, and sub-contractors will
5 receive mandatory worker safety training appropriate for their expected duties and must
6 conform to OSHA safety procedures. Personal safety equipment such as hard hats, ear and
7 eye protection, safety boots, high visibility vests, and fire-resistant clothing would be
8 required for all workers onsite. Accidents and injuries would be reported to Cerilon's
9 designated safety officer. All equipment brought or constructed onsite will also meet the
10 requirements of OSHA regulations. A routine and ongoing training program will be in
11 place. All personnel in the operating units will have personal gas monitors.

12 **Q38. How will Cerilon minimize the risk of fire or other risks associated with**
13 **flammable/hazardous materials?**

14 A. A risk of fire may be present during the operation of the Project due to the presence of
15 flammable materials (e.g., natural gas, syngas, hydrogen, diesel, naphtha, and base oils)
16 and potential ignition sources. The Project will meet or exceed industry and regulatory
17 standards for the safe design of process equipment to minimize the risk of a fire starting or
18 spreading to other potential fuel sources. The standards include using appropriate building
19 materials and properly spacing equipment. The Project will also be equipped with a fire
20 suppression system. In the unlikely event of an incident, all potentially hazardous materials
21 (automotive fluids, spray paint cans, etc.) will be collected and shipped to a licensed and
22 permitted disposal or recycling facility. To reduce the potential for a release of regulated
23 or hazardous materials during the construction phase of the Project, work will be planned
24 and performed in accordance with OSHA standards and protocols addressing the use of
25 potentially hazardous materials and applicable federal and state environmental regulations.
26 If a hazardous release were to occur, cleanup, management, and disposal of contaminated
27 soils would be conducted according to U.S. Environmental Protection Agency (EPA) and
28 state standards. Conformance to these standards and procedures would reduce the potential
29 for significant impacts resulting from releasing hazardous materials.

1 **Q39. Explain how the Project will be monitored and controlled during operations.**

2 A. The Project will entail a highly automated process that requires less operating personnel.
3 This means the extensive use of instrumentation, automated valves, communication
4 systems, advanced motor control centers, and CCTVs - all controlled and monitored by a
5 state-of-the-art main control room located at the site. This control room is the heart of the
6 operation and will be manned continuously 24/7 by two to three highly trained operators.
7 In the unlikely event of an emergency, the operators or automated system can shut down
8 the facility either manually or automatically. Production data will be transferred to
9 Cerilon's Calgary office in real-time to enable data analysts to review process algorithms
10 for optimization and accounting purposes.

11 **Q40. Please explain what steps Cerilon will take to ensure the Project's emergency
12 preparedness.**

13 A. The Project will have an Emergency Response Plan ("ERP") that governs reporting and
14 response procedures in the event of an emergency. The ERP will be shared with local
15 emergency response teams for review and comment, and training will be coordinated as
16 necessary. Additionally, Cerilon personnel will be trained annually on emergency
17 equipment use, emergency response, and first aid procedures.

18 The EPC contractors for the Project will coordinate the ERP during construction. During
19 operations, the Project's O&M Manager will continue coordination of the ERP with local
20 emergency responders. Cerilon has engaged with the Williston Fire Department, the
21 Williston Rural Fire Department, and the Trenton Rural Fire Department regarding
22 emergency preparedness and these discussions and engagement remains ongoing. Cerilon
23 has had preliminary discussions with the County regarding the Project's ERP.

24 **Q41. Explain what types of maintenance activities are required for the Project during
25 operations.**

26 A. The Project is focused on designing a highly reliable facility. This means redundant
27 equipment in some cases that can be taken offline for minor repairs or replaced. Condition
28 monitoring of equipment is of great importance to assist with regular maintenance
29 planning and the planning for major turnarounds. Each plant will undergo a two-to-three-

1 week turnaround every three to four years, where the process is completely shut down and
2 made safe to enable equipment replacements or change-outs, refurbishments, minor
3 modifications, critical vessel/reactor inspections, as well as catalyst change-outs. Third-
4 party contractors will be engaged to assist with performing the various turnaround
5 activities.

6

7 **Q42. What is the estimated life of the Project?**

8 A. The Project is being engineered for a 30-year design life. This lifespan can easily be
9 extended through proper maintenance programs and future engineered refurbishments to
10 50 years.

11

12 **X. Conclusion**

13

14 **Q43. In your opinion, will the Project's location and operation produce minimal adverse**
15 **effects?**

16 A. Yes. The Project has been sited to comply with Williams County zoning regulations and
17 the Commission's siting criteria, as well as to minimize potential impacts to existing land
18 uses, infrastructure, and environmental resources. Additionally, the Project will provide
19 significant benefits to the local community and the state. For these reasons, and as
20 demonstrated through the Application, supporting filings, and my testimony, the Project
21 will produce minimal adverse effects.

22

23 **Q44. Does this conclude your testimony?**

24 A. Yes.